Chaos and integrability of relativistic homogeneous potentials in curved space

Author:

Szumiński WojciechORCID,Przybylska MariaORCID,Maciejewski Andrzej J.ORCID

Abstract

AbstractRelativistic Hamiltonian systems of n degrees of freedom in static curved spaces are considered. The source of space-time curvature is a scalar potential $$V(\varvec{q})$$ V ( q ) . In the limit of weak potential $$2V(\varvec{q})/mc^2\ll 1$$ 2 V ( q ) / m c 2 1 , and small momentum $$|\varvec{p} |/ mc\ll 1$$ | p | / m c 1 , these systems transform into the corresponding non-relativistic flat Hamiltonian’s with the standard sum of kinetic energy plus potential $$V(\varvec{q})$$ V ( q ) . We compare the dynamics of the classical and the corresponding relativistic curved counterparts on examples of important physical models: the Hénon–Heiles system, the Armbruster–Guckenheimer–Kim galactic system and swinging Atwood’s machine. Our main results are formulated for relativistic Hamiltonian systems with homogeneous potentials of non-zero integer degree k of homogeneity. First, we show that the integrability of a non-relativistic flat Hamiltonian with a homogeneous potential is a necessary condition for the integrability of its relativistic counterpart in curved space-time with the same homogeneous potential or with a non-homogeneous potential that the lowest homogenous part coincides with this homogeneous potential. Moreover, we formulate necessary integrability conditions for relativistic Hamiltonian systems with homogeneous potentials in curved space-time. These conditions were obtained from analysis of the differential Galois group of variational equations along a particular straight-line solution defined by a non-zero vector $$\varvec{d}$$ d satisfying $$V'(\varvec{d})=\gamma \varvec{d}$$ V ( d ) = γ d for a certain $$\gamma \ne 0$$ γ 0 . They are very strong: if the relativistic system is integrable in the Liouville sense, then either $$k=\pm 2$$ k = ± 2 , or all non-trivial eigenvalues of the re-scaled Hessian $$\gamma ^{-1}V''(\varvec{d})$$ γ - 1 V ( d ) are either 0, or 1. Certain integrable relativistic systems are presented.

Funder

Narodowe Centrum Nauki

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3