Abstract
AbstractWe will study evolution algebras A that are free modules of dimension two over domains. We start by making some general considerations about algebras over domains: They are sandwiched between a certain essential D-submodule and its scalar extension over the field of fractions of the domain. We introduce the notion of quasiperfect algebras and we characterize the perfect and quasiperfect evolution algebras in terms of the determinant of its structure matrix. We classify the two-dimensional perfect evolution algebras over domains parametrizing the isomorphism classes by a convenient moduli set.
Funder
Ministerio de Ciencia e Innovación
Junta de Andalucía
Publisher
Springer Science and Business Media LLC
Subject
Discrete Mathematics and Combinatorics,Algebra and Number Theory
Reference10 articles.
1. Ahmed, H., Bekbaev, U., Rakhimov, I.: On classification of $$2$$-dimensional evolution algebras and its applications. J. Phys.: Conf. Ser. 1489, 012001 (2020)
2. Cardoso Gonçalves, M.I., Gonçalves, D., Martín Barquero, D., Martín González, C., Siles Molina, M.: Squares and associative representations of two-dimensional evolution algebras. J. Algebra Appl. 20(06), 2150090 (2021)
3. Ceballos, M., Falcón, R.M., Núñez-Valdés, J., Tenorio, A.F.: A historical perspective of Tian’s evolution algebras. Expo. Math. (2021). https://doi.org/10.1016/j.exmath.2021.11.004
4. Ceballos, M., Núñez, J., Tenorio, A.F.: Finite-dimensional evolution algebras and (pseudo)digraphs. Math. Methods Appl. Sci. (2020). https://doi.org/10.1002/mma.6632
5. Celorrio, M.E., Velasco, M.V.: Classifying evolution algebras of dimensions two and three. Mathematics 7(12), 1236 (2019)