Abstract
AbstractFor a graph $$\Gamma $$
Γ
, let K be the smallest field containing all eigenvalues of the adjacency matrix of $$\Gamma $$
Γ
. The algebraic degree $$\deg (\Gamma )$$
deg
(
Γ
)
is the extension degree $$[K:\mathbb {Q}]$$
[
K
:
Q
]
. In this paper, we completely determine the algebraic degrees of Cayley graphs over abelian groups and dihedral groups.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Hunan Province
Publisher
Springer Science and Business Media LLC
Subject
Discrete Mathematics and Combinatorics,Algebra and Number Theory
Reference10 articles.
1. Ahmady, A., Bell, J., Mohar, B.: Integral Cayley graphs and groups. SIAM J. Discrete Math. 28, 685–701 (2014)
2. Alprin, R.C., Peterson, B.L.: Integral sets and Cayley graphs of finite groups. Electron. J. Comb. 19, P44 (2012)
3. Babai, L.: Spectra of Cayley graphs. J. Combin. Theory Ser. B 27(2), 180–189 (1979)
4. Li, F.: A method to determine algebraically integral Cayley digraphs on finite abelian group. Contr. Discrete Math. 2(15), 148–152 (2020)
5. Klotz, W., Sander, T.: Integral Cayley graphs defined by greatest common divisors. Electron. J. Comb. 18, P94 (2011)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献