Brauer Analysis of Some Cayley and Nilpotent Graphs and Its Application in Quantum Entanglement Theory

Author:

Cañadas Agustín Moreno1ORCID,Gutierrez Ismael2ORCID,Mendez Odette M.3ORCID

Affiliation:

1. Departamento de Matemáticas, Universidad Nacional de Colombia, Edificio Yu Takeuchi 404, Kra 30 No. 45-03, Bogotá 11001000, Colombia

2. Departamento de Matemáticas y Estadística, Universidad del Norte, Kilómetro 5, Via Puerto Colombia, Barranquilla 081007, Colombia

3. Departamento de Matemáticas, Universidad Nacional de Colombia, Sede, La Nubia, Manizales 170003, Colombia

Abstract

Cayley and nilpotent graphs arise from the interaction between graph theory and algebra and are used to visualize the structures of some algebraic objects as groups and commutative rings. On the other hand, Green and Schroll introduced Brauer graph algebras and Brauer configuration algebras to investigate the algebras of tame and wild representation types. An appropriated system of multisets (called a Brauer configuration) induces these algebras via a suitable bounded quiver (or bounded directed graph), and the combinatorial properties of such multisets describe corresponding indecomposable projective modules, the dimensions of the algebras and their centers. Undirected graphs are examples of Brauer configuration messages, and the description of the related data for their induced Brauer configuration algebras is said to be the Brauer analysis of the graph. This paper gives closed formulas for the dimensions of Brauer configuration algebras (and their centers) induced by Cayley and nilpotent graphs defined by some finite groups and finite commutative rings. These procedures allow us to give examples of Hamiltonian digraph constructions based on Cayley graphs. As an application, some quantum entangled states (e.g., Greenberger–Horne–Zeilinger and Dicke states) are described and analyzed as suitable Brauer messages.

Funder

Universidad Nacional de Colombia

Publisher

MDPI AG

Reference46 articles.

1. Desiderata and suggestions No. 2. The theory of groups: Graphical representation;Cayley;Am. J. Math.,1878

2. Coloring of commutative rings;Beck;J. Algebra,1988

3. The zero-divisor graph of a commutative ring;Anderson;J. Algebra,1999

4. A typical graph structure of a ring;Kala;Trans. Comb,2015

5. The weakly nilpotent graph of a commutative ring;Khojasteh;Canad. Math. Bull.,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3