Development and evaluation of an inertial measurement unit (IMU) system for jump detection and jump height estimation in beach volleyball

Author:

Schleitzer Samuel,Wirtz Svenja,Julian Ross,Eils EricORCID

Abstract

AbstractWearables are commonly used in practice for measuring and monitoring performance in high-level sports. That being said, they are often designed and intended for use during sports conducted on rigid surfaces. As such, sports that are conducted on sand, e.g. beach volleyball, lack equipment that can be specifically applied in the field. Therefore, the aim of this study was to develop and validate an inertial measurement unit (IMU)-based system for automatic jump detection and jump height measurement in sand. The system consists of two IMUs, which were attached to different parts of the athletes’ bodies. For validation under laboratory conditions, 20 subjects each performed five jumps on two consecutive days in a sandbox placed on force plates. Afterwards, five beach volleyball athletes performed complex combinations of beach volleyball-specific movements and jumps wearing the IMUs whilst being video recorded simultaneously. This was conducted in an ecologically valid setting to determine the validity of the IMU to correctly detect jumping actions. The results of the laboratory tests show excellent day-to-day reliability (intraclass correlation coefficient [ICC] = 0.937, two-way mixed effects, single measurement, consistency) and excellent concurrent validity (ICC = 0.946, two-way mixed effects, single rater, absolute agreement) compared to the gold standard (force plates). The accuracy in jump detection of the IMU was 100 and 97.5% in the laboratory and ecologically valid settings, respectively. Although there are still some aspects to consider when using such devices, the current findings provide recommendations regarding best practice when using such a device on a variable and unstable surface. Collectively, such a device could be applied in the field to provide coaches and practitioners with direct feedback to monitor training or match play.

Funder

Bundesinstitut für Sportwissenschaft

Westfälische Wilhelms-Universität Münster

Publisher

Springer Science and Business Media LLC

Subject

Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3