Test–Retest and Between–Device Reliability of Vmaxpro IMU at Hip and Ankle for Vertical Jump Measurement

Author:

Villalon-Gasch Lamberto1ORCID,Jimenez-Olmedo Jose M.1ORCID,Olaya-Cuartero Javier1ORCID,Pueo Basilio1ORCID

Affiliation:

1. Research Group in Health, Physical Activity, and Sports Technology (Health-Tech), Faculty of Education, University of Alicante, San Vicente del Raspeig, 03690 Alicante, Spain

Abstract

The ability to generate force in the lower body can be considered a performance factor in sports. This study aims to analyze the test–retest and between-device reliability related to the location on the body of the inertial measurement unit Vmaxpro for the estimation of vertical jump. Eleven highly trained female athletes performed 220 countermovement jumps (CMJ). Data were simultaneously captured by two Vmaxpro units located between L4 and L5 vertebrae (hip method) and on top of the tibial malleolus (ankle method). Intrasession reliability was higher for ankle (ICC = 0.96; CCC = 0.93; SEM = 1.0 cm; CV = 4.64%) than hip (ICC = 0.91; CCC = 0.92; SEM = 3.4 cm; CV = 5.13%). In addition, sensitivity was higher for ankle (SWC = 0.28) than for the hip method (SWC = 0.40). The noise of the measurement (SEM) was higher than the worthwhile change (SWC), indicating lack of ability to detect meaningful changes. The agreement between methods was moderate (rs = 0.84; ICC = 0.77; CCC = 0.25; SEM = 1.47 cm). Significant differences were detected between methods (−8.5 cm, p < 0.05, ES = 2.2). In conclusion, the location of the device affects the measurement by underestimating CMJ on ankle. Despite the acceptable consistency of the instrument, the results of the reliability analysis reveal a significant magnitude of both random and systematic error. As such, the Vmaxpro should not be considered a reliable instrument for measuring CMJ.

Funder

Generalitat Valenciana

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3