Multivariable space-time correction for wind speed in numerical weather prediction (NWP) based on ConvLSTM and the prediction of probability interval
Author:
Publisher
Springer Science and Business Media LLC
Subject
General Earth and Planetary Sciences
Link
https://link.springer.com/content/pdf/10.1007/s12145-023-01036-1.pdf
Reference40 articles.
1. Agga A, Abbou A, Labbadi M, Houm YE (2021) Short-term self consumption PV plant power production forecasts based on hybrid CNN-LSTM, ConvLSTM models. Renew Energy 117:101–112
2. Ahmed R, Sreeram V, Mishra Y, Arif MD (2020) A review and evaluation of the state-of-the-art in PV solar power forecasting: techniques and optimization. Renew Sust Energ Rev 124:109792
3. Ajitha A, Goel M, Assudani M, Radhika S, Goel S (2022) Design and development of residential sector load prediction model during COVID-19 pandemic using LSTM based RNN. Electr Power Syst Res 212:108635
4. Bai M, Chen Y, Zhao X, Liu J, Yu D (2022) Deep attention ConvLSTM-based adaptive fusion of clear-sky physical prior knowledge and multivariable historical information for probabilistic prediction of photovoltaic power. Expert Syst Appl 202:117335
5. Cassola F, Burlando M (2012) Wind speed and wind energy forecast through Kalman filtering of numerical weather prediction model output. Appl Energy 99:154–166
Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Two-stage correction prediction of wind power based on numerical weather prediction wind speed superposition correction and improved clustering;Energy;2024-09
2. A Short-Term Wind Speed Forecasting Framework Coupling a Maximum Information Coefficient, Complete Ensemble Empirical Mode Decomposition with Adaptive Noise, Shared Weight Gated Memory Network with Improved Northern Goshawk Optimization for Numerical Weather Prediction Correction;Sustainability;2024-08-07
3. A Comprehensive Multivariate Wind Speed Forecasting Model Utilizing Deep Learning Neural Networks;Arabian Journal for Science and Engineering;2024-06-28
4. Probability Density Prediction of Wind Power Based on BiLSTM-DCC;2024 IEEE 2nd International Conference on Power Science and Technology (ICPST);2024-05-09
5. Air Quality Class Prediction Using Machine Learning Methods Based on Monitoring Data and Secondary Modeling;Atmosphere;2024-04-30
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3