Machine learning techniques for monthly river flow forecasting of Hunza River, Pakistan
Author:
Publisher
Springer Science and Business Media LLC
Subject
General Earth and Planetary Sciences
Link
http://link.springer.com/content/pdf/10.1007/s12145-020-00450-z.pdf
Reference47 articles.
1. Alvisi S, Franchini M (2011) Fuzzy neural networks for water level and discharge forecasting with uncertainty. Environ Model Softw 26(4):523–537. https://doi.org/10.1016/j.envsoft.2010.10.016
2. Asefa T, Kemblowski M, McKee M, Khalil A (2006) Multi-time scale stream flow predictions: the support vector machines approach. J Hydrol 318(1–4):7–16. https://doi.org/10.1016/j.jhydrol.2005.06.001
3. Baig SU, Tahir AA, Din A, Khan H (2018) Hypsometric properties of mountain landscape of Hunza River basin of the Karakoram Himalaya. J Mt Sci 15(9):1881–1891. https://doi.org/10.1007/s11629-018-4849-x
4. Bajracharya SR, Maharjan SB, Shrestha F, Guo W, Liu S, Immerzeel W, Shrestha B (2015) The glaciers of the Hindu Kush Himalayas: current status and observed changes from the 1980s to 2010. Int J Water Resour Dev 31(2):161–173. https://doi.org/10.1080/07900627.2015.1005731
5. Bharti B, Pandey A, Tripathi SK, Kumar D (2017) Modelling of runoff and sediment yield using ANN, LS-SVR, REPTree and M5 models. Hydrol Res 48(6):1489–1507. https://doi.org/10.2166/nh.2017.153
Cited by 111 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A combined deep CNN-RNN network for rainfall-runoff modelling in Bardha Watershed, India;Artificial Intelligence in Geosciences;2024-12
2. Exploring the potential of deep learning for streamflow forecasting: A comparative study with hydrological models for seasonal and perennial rivers;Expert Systems with Applications;2024-10
3. A Comparative Study of GRU and LSTM Time-Series Forecasting for Precise River Dam Hydrodynamic Prediction;2024 International Electronics Symposium (IES);2024-08-06
4. AI-driven predictions of geophysical river flows with vegetation;Scientific Reports;2024-07-16
5. Performance evaluation of various hydrological models with respect to hydrological responses under climate change scenario: a review;Cogent Engineering;2024-06-03
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3