Modelling of runoff and sediment yield using ANN, LS-SVR, REPTree and M5 models

Author:

Bharti Birendra1,Pandey Ashish1,Tripathi S. K.1,Kumar Dheeraj2

Affiliation:

1. Department of Water Resources Development and Management, IIT Roorkee, Roorkee, Haridwar, 247667, India

2. Civil Engineering Department, IIT Roorkee, Roorkee, Haridwar, 247667, India

Abstract

Abstract In this study, the performance evaluation of five machine learning models, namely, ANNLM, ANNSCG, least square-support vector regression (LS-SVR), reduced error pruning tree (REPTree) and M5, was carried out for predicting runoff and sediment in the Pokhariya watershed, India using hydro-meteorological variables as input. The input variables were selected using the trial-and-error procedure which represents the hydrological process in the watershed. The seven input variables to all the models comprised a combination of rainfall, average temperature, relative humidity, pan evaporation, sunshine duration, solar radiation and wind speed. The monthly runoff and sediment yield data were used to calibrate and validate all models for the years 2000 to 2008. Evaluation of models' performances were carried out using four statistical indices, i.e., Nash–Sutcliffe coefficient (NSE), coefficient of determination (R2), percent bias (PBIAS) and RMSE-observations standard deviation ratio (RSR). Comparative analysis showed that the ANNLM model marginally outperformed the LS-SVR model and all the other models investigated during calibration and validation for runoff modelling whereas the LS-SVR model surpassed the artificial neural networks (ANN) model and other models for sediment yield modelling. Moreover, M5 model tree is better in simulating sediment yield and runoff than its near counterpart, the REPTree model, and marginally inferior when compared to LS-SVR and ANN models.

Publisher

IWA Publishing

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3