Seiberg–Witten Floer spectra and contact structures

Author:

Roso B. R. S.

Abstract

AbstractIn this article, the author defines an invariant of rational homology 3-spheres equipped with a contact structure as an element of a cohomotopy set of the Seiberg–Witten Floer spectrum as defined in Manolescu (Geometry Topol 7(2):889–932, 2003). Furthermore, in light of the equivalence established in Lidman and Manolescu (Astérisque 399:25, 2018) between the Borel equivariant homology of said spectrum and the Seiberg–Witten Floer homology of Kronheimer and Mrowka (Monopoles and three-manifolds, vol. 10, Cambridge University Press, Cambridge, 2007), the author shall show that this homotopy theoretic invariant recovers the already well known contact element in the Seiberg–Witten Floer cohomology (vid. e.g. Kronheimer et al. in Ann Math 20:457–546, 2007) in a natural fashion. Next, the behaviour of the cohomotopy invariant is considered in the presence of a finite covering. This setting naturally asks for the use of Borel cohomology equivariant with respect to the group of deck transformations. Hence, a new equivariant contact invariant is defined and its properties studied. The invariant is then computed in one concrete example, wherein the author demonstrates that it opens the possibility of considering scenarios hitherto inaccessible.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Geometry and Topology,Modeling and Simulation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Seiberg–Witten Floer spectra and contact structures;Journal of Fixed Point Theory and Applications;2023-05-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3