Author:
Seidel Paul,Wilkins Nicholas
Abstract
AbstractWe prove a relationship between quantum Steenrod operations and the quantum connection. In particular, there are operations extending the quantum Steenrod power operations that, when viewed as endomorphisms of equivariant quantum cohomology, are covariantly constant. We demonstrate how this property is used in computations of examples.
Funder
Massachusetts Institute of Technology
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Geometry and Topology,Modeling and Simulation
Reference23 articles.
1. Albers, P.: A Lagrangian Piunikhin–Salamon–Schwarz morphism and two comparison homomorphisms in Floer homology. Int. Math. Res. Notes (IMRN) (2008) (art. ID rnm134)
2. Betz, M., Cohen, R.: Graph moduli spaces and cohomology operations. Turkish J. Math. 18, 23–41 (1994)
3. Cineli, E., Ginzburg, V., Gurel, B.: From pseudo-rotations to holomorphic curves via quantum Steenrod squares. Int. Math. Res. Notes (IMRN) 2274–2297 (2022)
4. Cohen, R., Norbury, P.: Morse field theory. Asian J. Math. 16, 661–711 (2012)
5. Crauder, B., Miranda, R.: Quantum cohomology of rational surfaces. In: The moduli space of curves (Texel Island, 1994), pp. 33–80. (Birkhäuser, 1995)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Formal groups and quantum cohomology;Geometry & Topology;2023-11-09
2. Hamiltonian no-torsion;Geometry & Topology;2023-09-19