From Pseudo-Rotations to Holomorphic Curves via Quantum Steenrod Squares

Author:

Çineli Erman1,Ginzburg Viktor L1,Gürel Başak Z2

Affiliation:

1. Department of Mathematics, UC Santa Cruz, Santa Cruz, CA 95064, USA

2. Department of Mathematics, University of Central Florida, Orlando, FL 32816, USA

Abstract

Abstract In the context of symplectic dynamics, pseudo-rotations are Hamiltonian diffeomorphisms with finite and minimal possible number of periodic orbits. These maps are of interest in both dynamics and symplectic topology. We show that a closed, monotone symplectic manifold, which admits a nondegenerate pseudo-rotation, must have a deformed quantum Steenrod square of the top degree element and hence nontrivial holomorphic spheres. This result (partially) generalizes a recent work by Shelukhin and complements the results by the authors on nonvanishing Gromov–Witten invariants of manifolds admitting pseudo-rotations.

Funder

National Science Foundation

Simons Foundation

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference38 articles.

1. New examples in smooth ergodic theory. Ergodic diffeomorphisms (in Russian);Anosov;Trudy Moskov. Mat. Obšč,1970

2. Categorical constructions in Morse theory and cohomology operations;Betz,1993

3. Graph moduli spaces and cohomology operations;Betz;Turkish J. Math.,1994

4. The Gysin exact sequence for ${\mathrm{S}}^1$-equivariant symplectic homology;Bourgeois;J. Topol. Anal.,2013

5. Periodic approximations of irrational pseudo-rotations using pseudoholomorphic curves;Bramham;Ann. of Math. (2),2015

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The strong closing lemma and Hamiltonian pseudo-rotations;Journal of Modern Dynamics;2024

2. Hamiltonian no-torsion;Geometry & Topology;2023-09-19

3. A Hölder-Type Inequality for the C0 Distance and Anosov–Katok Pseudo-Rotations;International Mathematics Research Notices;2023-05-23

4. Pseudo‐Rotations versus Rotations;Journal of the London Mathematical Society;2022-07-19

5. Another look at the Hofer–Zehnder conjecture;Journal of Fixed Point Theory and Applications;2022-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3