Spinel structure of activated carbon supported MFe2O4 composites as an economic and efficient electrocatalyst for oxygen reduction reaction in neutral media

Author:

Sabaa Hanaa M.,El-Khatib K. M.,El-Kady Mohamed Y.,Mahmoud Sawsan A.ORCID

Abstract

AbstractFor more sustainability and marketing of microbial fuel cells (MFCs) in wastewater treatment, the sluggish kinetics of cathode oxygen reduction reaction (ORR) and platinum scarcity (with its high cost) should be swept away. So, this work aimed to synthesize metal ferrite (MFe2O4; M = Mn, Cu, and Ni) -based activated carbon composites as inexpensive ORR cathode catalysts. The composites were synthesized using a facile modified co-precipitation approach with low-thermal treatment and labeled as MnFe2O4/AC, CuFe2O4/AC, and NiFe2O4/AC. The as-synthesized catalysts are physicochemically characterized by X-ray diffraction (XRD), Raman spectroscopy, Fourier transform infrared microscopy (FTIR), Barrett-Joyner-Halenda (BJH), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), and electron spin resonance (ESR). The electrochemical catalytic performance toward ORR was studied in a phosphate buffer solution (PBS) at neutral media via cyclic voltammetry (CV) and linear sweep voltammetry (LSV). MnFe2O4/AC has the highest onset potential (Eonset) value of − 0.223 V compared to CuFe2O4/AC (− 0.280 V) and NiFe2O4/AC (− 0.270 V). MnFe2O4/AC also has the highest kinetic current density (jK) and lowest Tafel slope (− 5 mA cm−2 and − 330 mV dec−1) compared to CuFe2O4/AC (− 3.05 mA cm−2 and − 577 mV dec−1) and NiFe2O4/AC (− 2.67 mA cm−2 and − 414 mV dec−1). The ORR catalyzed by MnFe2O4/AC at pH = 7 proceeds via a 4e -kinetic pathway. The ESR is in good agreement with the electrochemical analysis due to the highest ∆Hppvalue for MnFe2O4/AC compared to CuFe2O4/AC and NiFe2O4/AC. Thus, MnFe2O4/AC is suggested as a promising alternative to Pt- electrocatalyst cathode for MFCs at neutral conditions. Graphical Abstract

Funder

Egyptian Petroleum Research Institute

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Electrochemistry,Condensed Matter Physics,General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3