Heterogeneous porous biochar-supported nano NiFe2O4 for efficient removal of hazardous antibiotic from pharmaceutical wastewater

Author:

Azzam Ahmed B.ORCID,Tokhy Yousif A.,Dars Farida M. El,Younes Ahmed A.

Abstract

AbstractDue to the dual issues of antibiotic resistance and bioaccumulation toxicity, antibiotics are ubiquitously present in aquatic environments, and this is causing serious concern. Herein, novel nickel ferrite (NiFe2O4) nanoparticles were successfully loaded onto activated biochar (BC) derived from banana peel (BP) to obtain magnetic nanocomposite (BC-NiFe2O4) as an effective biosorbent for the ciprofloxacin antibiotic (CIP) elimination from pharmaceutical effluent. A facile co-precipitation approach was utilized to construct the heterogeneous BC-NiFe2O4. The synthesized materials were systematically characterized using techniques such as XRD, FE-SEM, EDX, HR-TEM, BET, FTIR, and XPS. In addition, the magnetic measurements indicated the ferromagnetic behavior of the BC-NiFe2O4 sample. The influencing factors (i.e., pH, contact time, initial concentration, dose of adsorbent, ions interference, and solution temperature) of the adsorption process were also well studied. The adsorption capacity of the BC-NiFe2O4 heterostructure was 68.79 mg g−1 compared to the BC sample (35.71 mg g−1), confirming that the loading of magnetically NiFe2O4 nanoparticles onto the surface of porous biochar enhanced its stability and adsorption performance for CIP removal, wherein the metal-antibiotic complex has a significant effect for the removal of CIP. Moreover, the Langmuir adsorption isotherm and the pseudo-second-order model displayed a good fit for the experimental data. The values of △H° and △G° revealed that the adsorption process was endothermic and spontaneous. The coordination affinities, π-π stacking, and H-bonding interactions play a more critical role in the adsorption mechanism that confirmed by FTIR and XPS analysis. To study the stability of BC-NiFe2O4 nanocomposites, desorption and recycling studies were investigated. The results revealed that after three cycles, no significant loss in removal efficiency was detected, reflecting the stability and reusability of the prepared BC-NiFe2O4 nanocomposite.

Funder

Helwan University

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Pollution,Environmental Chemistry,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3