Structure and particle surface analysis of Li2S–P2S5–LiI-type solid electrolytes synthesized by liquid-phase shaking

Author:

Hikima KazuhiroORCID,Ogawa Kaito,Indrawan Radian Febi,Tsukasaki Hirofumi,Hiroi Satoshi,Ohara Koji,Ikeda Kazutaka,Watanabe Toshiki,Matsunaga Toshiyuki,Yamamoto Kentaro,Mori Shigeo,Uchimoto Yoshiharu,Matsuda Atsunori

Abstract

AbstractLi2S–P2S5–LiI-type solid electrolytes, such as Li4PS4I, Li7P2S8I, and Li10P3S12I, are promising candidates for anode layers in all-solid-state batteries because of their high ionic conductivity and stability toward Li anodes. However, few studies have been conducted on their detailed local structure and particle surface state. In this study, Li7P2S8I (Li2S: P2S5:LiI = 3:1:1) solid electrolytes as the chemical composition were synthesized by mechanical milling and liquid-phase shaking, and their local structures were analyzed by transmission electron microscopy. The particle surface states were analyzed by X-ray photoelectron spectroscopy, high-energy X-ray scattering measurements, and neutron total scattering experiments. The results showed that Li7P2S8I solid electrolytes are composed of nanocrystals, such as Li4PS4I, LiI, Li10P3S12I and an amorphous area as the main region, indicating that the crystalline components alone do not form ionic conductive pathways, with both the amorphous and crystalline regions contributing to the high ionic conductivity. Moreover, the ionic conductivity of the crystalline/amorphous interface of the glass-ceramic was higher than that of the Li2S–P2S5–LiI glass. Finally, an organic-solvent-derived stable surface layer, which was detected in the liquid-phase shaking sample, served as one of the factors that contributed to its high stability (which surpassed that of the mechanically milled sample) toward lithium anodes. We expect these findings to enable the effective harnessing of particle surface states to develop enhanced sulfide solid electrolytes.

Funder

JSPS KAKENHI

Advanced Low Carbon Technology Research and Development Program

New Energy and Industrial Technology Development Organization

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3