Design of Solid Electrolytes with Fast Ion Transport: Computation-Driven and Practical Approaches

Author:

Tufail Muhammad Khurram12,Zhai Pengbo1,Jia Mengyang1,Zhao Ning1,Guo Xiangxin1

Affiliation:

1. College of Physics, Qingdao University, 266071 Qingdao, China.

2. College of Materials Science and Engineering, Qingdao University, 266071 Qingdao, China.

Abstract

For next-generation all-solid-state metal batteries, the computation can lead to the discovery of new solid electrolytes with increased ionic conductivity and excellent safety. Based on computational predictions, a new proposed solid electrolyte with a flat energy landscape and fast ion migration is synthesized using traditional synthesis methods. Despite the promise of the predicted solid electrolyte candidates, conventional synthetic methods are frequently hampered by extensive optimization procedures and overpriced raw materials. It is impossible to rationally develop novel superionic conductors without a comprehensive understanding of ion migration mechanisms. In this review, we cover ion migration mechanisms and all emerging computational approaches that can be applied to explore ion conduction in inorganic materials. The general illustrations of sulfide and oxide electrolyte structures as well as their fundamental features, including ion migration paths, dimensionalities, defects, and ion occupancies, are systematically discussed. The major challenges to designing the solid electrolyte and their solving strategies are highlighted, such as lattice softness, polarizability, and structural disorder. In addition to an overview of recent findings, we propose a computational and experimental approach for designing high-performance solid electrolytes. This review article will contribute to a practical understanding of ion conduction, designing, rapid optimization, and screening of advanced solid electrolytes in order to eliminate liquid electrolytes.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Energy (miscellaneous),Fuel Technology,Materials Science (miscellaneous),Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3