Abstract
AbstractWe describe a comprehensive model for systems locked in the Laplace resonance. The framework is based on the simplest possible dynamical structure provided by the Keplerian problem perturbed by the resonant coupling truncated at second order in the eccentricities. The reduced Hamiltonian, constructed by a transformation to resonant coordinates, is then submitted to a suitable ordering of the terms and to the study of its equilibria. Henceforth, resonant normal forms are computed. The main result is the identification of two different classes of equilibria. In the first class, only one kind of stable equilibrium is present: the paradigmatic case is that of the Galilean system. In the second class, three kinds of stable equilibria are possible and at least one of them is characterised by a high value of the forced eccentricity for the ‘first planet’: here, the paradigmatic case is the exo-planetary system GJ-876, in which the combination of libration centres admits triple conjunctions otherwise not possible in the Galilean case. The normal form obtained by averaging with respect to the free eccentricity oscillations describes the libration of the Laplace argument for arbitrary amplitudes and allows us to determine the libration width of the resonance. The agreement of the analytic predictions with the numerical integration of the toy models is very good.
Funder
Università degli Studi di Roma Tor Vergata
Publisher
Springer Science and Business Media LLC
Subject
Space and Planetary Science,Astronomy and Astrophysics,Applied Mathematics,Computational Mathematics,Mathematical Physics,Modelling and Simulation
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献