Existence proof of librational invariant tori in an averaged model of HD60532 planetary system

Author:

Danesi Veronica,Locatelli Ugo,Sansottera Marco

Abstract

AbstractWe investigate the long-term dynamics of HD60532, an extrasolar system hosting two giant planets orbiting in a 3:1 mean motion resonance. We consider an average approximation at order one in the masses which results (after the reduction in the constants of motion) in a resonant Hamiltonian with two libration angles. In this framework, the usual algorithms constructing the Kolmogorov normal form approach do not easily apply and we need to perform some untrivial preliminary operations, in order to adapt the method to this kind of problems. First, we perform an average over the fast angle of libration which provides an integrable approximation of the Hamiltonian. Then, we introduce action-angle variables that are adapted to such an integrable approximation. This sequence of preliminary operations brings the Hamiltonian in a suitable form to successfully start the Kolmogorov normalization scheme. The convergence of the KAM algorithm is proved by applying a technique based on a computer-assisted proof. This allows us to reconstruct the quasi-periodic motion of the system, with initial conditions that are compatible with the observations.

Funder

Università degli Studi di Roma Tor Vergata

Publisher

Springer Science and Business Media LLC

Subject

Space and Planetary Science,Astronomy and Astrophysics,Applied Mathematics,Computational Mathematics,Mathematical Physics,Modeling and Simulation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Computer-assisted proofs of existence of KAM tori in planetary dynamical models of υ-And b;Communications in Nonlinear Science and Numerical Simulation;2024-03

2. From infinite to finite time stability in Celestial Mechanics and Astrodynamics;Astrophysics and Space Science;2023-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3