Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Industrial and Manufacturing Engineering,Software
Reference43 articles.
1. Aguiar, P. R., Da Silva, R. B., Gerônimo, T. M., Franchin, M. N., & Bianchi, E. C. (2017). Estimating high precision hole diameters of aerospace alloys using artificial intelligence systems: a comparative analysis of different techniques. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 39(1), 127–153. https://doi.org/10.1007/s40430-016-0525-7.
2. Al-Kharaz, M., Ananou, B., Ouladsine, M., Combal, M., & Pinaton, J., (2019, October). Quality Prediction in Semiconductor Manufacturing processes using multilayer perceptron feedforward artificial neural network. In 2019 8th international conference on systems and control (ICSC) (pp. 423–428). IEEE https://doi.org/10.1109/ICSC47195.2019.8950664.
3. Arnheiter, E. D., & Maleyeff, J. (2005). The integration of lean management and Six Sigma. The TQM magazine. https://doi.org/10.1108/09544780510573020.
4. Baker, N., Lu, H., Erlikhman, G., & Kellman, P. J. (2018). Deep convolutional networks do not classify based on global object shape. PLoS Computational Biology, 14(12), e1006613. https://doi.org/10.1371/journal.pcbi.1006613.
5. Banadaki, Y., Razaviarab, N., Fekrmandi, H., & Sharifi, S. (2020). Toward Enabling a reliable quality monitoring system for additive manufacturing process using deep convolutional neural networks. arXiv:2003.08749.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献