Author:
Xiong Jun,Zhang Guangjun,Hu Jianwen,Wu Lin
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Industrial and Manufacturing Engineering,Software
Reference18 articles.
1. Chokkalingham, S., Chandrasekhar, N., & Vasudevan, M. (2011). Predicting the depth of penetration and weld bead width from the infra red thermal image of the weld pool using artificial neural network modeling. Journal of Intelligent Manufacturing. doi: 10.1007/s10845-011-0526-4 .
2. Davies O. L. (1978) The design and analysis of industrial experiments. Longmen, New York
3. Demuth H., Beale M. (1998) Neural network toolbox-for use with MATLAB. The Math Works Inc, Natick, MA
4. Doumanidis C., Kwak Y. M. (2002) Multivariable adaptive control of the bead profile geometry in gas metal arc welding with thermal scanning. International Journal of Pressure Vessels and Piping 79: 251–262
5. Huang W., Kovacevic R. (2011) A neural network and multiple regression method for the characterization of the depth of weld penetration in laser welding based on acoustic signatures. Journal of Intelligent Manufacturing 22: 131–143
Cited by
236 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献