A neural network and multiple regression method for the characterization of the depth of weld penetration in laser welding based on acoustic signatures
Author:
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Industrial and Manufacturing Engineering,Software
Link
http://link.springer.com/content/pdf/10.1007/s10845-009-0267-9.pdf
Reference20 articles.
1. Boll S.F. (1979) Suppression of acoustic noise in speech using spectral subtraction. Acoustic, Speech, and Signal Processing, IEEE Transactions 27: 113–120
2. Chao P.Y., Hwang Y.D. (1997) An improved neural network model for the prediction of cutting tool life. Journal of Intelligent Manufacturing 8: 107–115
3. Chumakov R. (2008) An artificial neural network for fault detection in the assembly of thread-forming screws. Journal of Intelligent Manufacturing 19: 327–333
4. Farson D., Hillsley K., Sames J., Young R. (1996) Frequency-time characteristics of airborne signals from laser welds. Journal of Laser Applications 8: 33–42
5. Gu H., Duley W.W. (1996a) Resonant acoustic emission during laser welding of metals. Journal of Physics D: Applied Physics 29: 550–555
Cited by 81 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Machine learning-based in-process monitoring for laser deep penetration welding: A survey;Engineering Applications of Artificial Intelligence;2024-11
2. Better generalization of penetration/keyhole status prediction model in plasma arc welding based on UDAs: A preliminary work;Journal of Manufacturing Processes;2024-08
3. Weld joint penetration state sequential identification algorithm based on representation learning of weld images;Journal of Manufacturing Processes;2024-06
4. In-process and post-process strategies for part quality assessment in metal powder bed fusion: A review;Journal of Manufacturing Systems;2024-04
5. Acoustic signal-based automated control of welding penetration using digital twin technology;Mechanical Systems and Signal Processing;2024-02
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3