Towards real-time in-situ monitoring of hot-spot defects in L-PBF: a new classification-based method for fast video-imaging data analysis

Author:

Bugatti MatteoORCID,Colosimo Bianca MariaORCID

Abstract

AbstractThe increasing interest towards additive manufacturing (AM) is pushing the industry to provide new solutions to improve process stability. Monitoring is a key tool for this purpose but the typical AM fast process dynamics and the high data flow required to accurately describe the process are pushing the limits of standard statistical process monitoring (SPM) techniques. The adoption of novel smart data extraction and analysis methods are fundamental to monitor the process with the required accuracy while keeping the computational effort to a reasonable level for real-time application. In this work, a new framework for the detection of defects in metal additive manufacturing processes via in-situ high-speed cameras is presented: a new data extraction method is developed to efficiently extract only the relevant information from the regions of interest identified in the high-speed imaging data stream and to reduce the dimensionality of the anomaly detection task performed by three competitor machine learning classification methods. The defect detection performance and computational speed of this approach is carefully evaluated through computer simulations and experimental studies, and directly compared with the performance and computational speed of other existing methods applied on the same reference dataset. The results show that the proposed method is capable of quickly detecting the occurrence of defects while keeping the high computational speed that would be required to implement this new process monitoring approach for real-time defect detection.

Funder

European Space Agency

Agenzia Spaziale Italiana

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Industrial and Manufacturing Engineering,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3