From knowledge-based to big data analytic model: a novel IoT and machine learning based decision support system for predictive maintenance in Industry 4.0

Author:

Rosati RiccardoORCID,Romeo Luca,Cecchini Gianalberto,Tonetto Flavio,Viti Paolo,Mancini Adriano,Frontoni Emanuele

Abstract

AbstractThe Internet of Things (IoT), Big Data and Machine Learning (ML) may represent the foundations for implementing the concept of intelligent production, smart products, services, and predictive maintenance (PdM). The majority of the state-of-the-art ML approaches for PdM use different condition monitoring data (e.g. vibrations, currents, temperature, etc.) and run to failure data for predicting the Remaining Useful Lifetime of components. However, the annotation of the component wear is not always easily identifiable, thus leading to the open issue of obtaining quality labeled data and interpreting it. This paper aims to introduce and test a Decision Support System (DSS) for solving a PdM task by overcoming the above-mentioned challenge while focusing on a real industrial use case, which includes advanced processing and measuring machines. In particular, the proposed DSS is comprised of the following cornerstones: data collection, feature extraction, predictive model, cloud storage, and data analysis. Differently from the related literature, our novel approach is based on a feature extraction strategy and ML prediction model powered by specific topics collected on the lower and upper levels of the production system. Compared with respect to other state-of-the-art ML models, the experimental results demonstrated how our approach is the best trade-off between predictive performance (MAE: 0.089, MSE: 0.018, $$R^{2}: 0.868$$ R 2 : 0.868 ), computation effort (average latency of 2.353 s for learning from 400 new samples), and interpretability for the prediction of processing quality. These peculiarities, together with the integration of our ML approach into the proposed cloud-based architecture, allow the optimization of the machining quality processes by directly supporting the maintainer/operator. These advantages may impact to the optimization of maintenance schedules and to get real-time warnings about operational risks by enabling manufacturers to reduce service costs by maximizing uptime and improving productivity.

Funder

Regione Marche

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Industrial and Manufacturing Engineering,Software

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3