Automation platform independent multi-agent system for robust networks of production resources in industry 4.0

Author:

Seitz MatthiasORCID,Gehlhoff FelixORCID,Cruz Salazar Luis AlbertoORCID,Fay AlexanderORCID,Vogel-Heuser BirgitORCID

Abstract

AbstractThe Cyber-Physical Production System (CPPS) is a concept derived from software (cyber) and hardware (physical) applications and is based on global information exchange between such systems. The CPPS is known as a trend of Industry 4.0 (I4.0) focusing on flexibility regarding new products and adaptability to new requirements. This paper focuses on two I4.0 scenarios described by the Platform Industrie 4.0 that describe challenges for the industry towards its digital future. First, it looks at the Order Controlled Production (OCP) scenario that deals with flexible and self-configuring production networks. It describes the dynamic organization of production resources required to execute a production order. Second, the Adaptable Factory (AF) application scenario is discussed, which focuses on the configuration of production resources and describes the adaptability of an individual facility through (physical) modification. This paper first provides a detailed analysis of the requirements from these scenarios. Furthermore, it analyses the current Multi-Agent System (MAS) architectures and agent-based planning and decision support systems requirements. MAS can be used to create application-independent I4.0 systems with arbitrary hardware automation platforms. To create a scalable communication network that also supports application independence and enables the semantically machine-readable description of the exchanged data, the OPC UA standard was adopted. As a result of the study, the concept shows how different and independent automation platforms can be seamlessly connected via OPC UA. The proposed MAS concept has been evaluated in different use cases, namely OCP and AF.

Funder

Deutsche Forschungsgemeinschaft

Technische Universität München

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Industrial and Manufacturing Engineering,Software

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3