1. Afrasiyabi, A., Lalonde, J.-F., & Gagné, C. (2020). Associative alignment for few-shot image classification. In European conference on computer vision (pp. 18–35). Springer.
2. Allen, K., Shelhamer, E., Shin, H., & Tenenbaum, J. (2019). Infinite mixture prototypes for few-shot learning. In International conference on machine learning (pp. 232–241). PMLR.
3. Bao, Y., Song, K., Liu, J., Wang, Y., Yan, Y., Yu, H., & Li, X. (2021). Triplet-graph reasoning network for few-shot metal generic surface defect segmentation. IEEE Transactions on Instrumentation and Measurement, 70, 1–11.
4. Bertinetto, L., Henriques, J. F., Torr, P. H., & Vedaldi, A. (2018). Meta-learning with differentiable closed-form solvers. arXiv preprint arXiv:1805.08136
5. Çelik, H., Dülger, L., & Topalbekiroğlu, M. (2014). Development of a machine vision system: Real-time fabric defect detection and classification with neural networks. The Journal of The Textile Institute, 105(6), 575–585.