Funder
Division of Civil, Mechanical and Manufacturing Innovation
Ministry of Education, India
Publisher
Springer Science and Business Media LLC
Reference48 articles.
1. Agarwal, A., Potthoff, N., Shah, A. M., Mears, L., & Wiederkehr, P. (2022). Analyzing the evolution of tool wear area in trochoidal milling of Inconel 718 using image processing methodology. Manufacturing Letters, 33, 373–379. https://doi.org/10.1016/j.mfglet.2022.08.002
2. Azzeh, J., Zahran, B., & Alqadi, Z. (2018). Salt and pepper noise: Effects and removal. JOIV International Journal on Informatics Visualization, 2(4), 252–256. https://doi.org/10.30630/joiv.2.4.151
3. Bergs, T., Holst, C., Gupta, P., & Augspurger, T. (2020). Digital image processing with deep learning for automated cutting tool wear detection. Procedia Manufacturing, 48, 947–958. https://doi.org/10.1016/j.promfg.2020.05.134
4. Cheng, H., Kong, X., Wang, Q., Ma, H., Yang, S., & Chen, G. (2023). Deep transfer learning based on dynamic domain adaptation for remaining useful life prediction under different working conditions. Journal of Intelligent Manufacturing, 34(2), 587–613. https://doi.org/10.1007/s10845-021-01814-y
5. Coromant S. (2023). Cutting Data Calculation. Sandvik Coromant. Retrieved from June 14, 2024 from www.sandvik.coromant.com/en-us/tools/coroplus-toolguide/cutting-data-calculation?MaterialID=5853467;6416911.