RUL prediction for automatic machines: a mixed edge-cloud solution based on model-of-signals and particle filtering techniques

Author:

Barbieri MatteoORCID,Nguyen Khan T. P.,Diversi Roberto,Medjaher Kamal,Tilli Andrea

Abstract

AbstractThis work aims to provide useful insights into the course of action and the challenges faced by machine manufacturers when dealing with the actual application of Prognostics and Health Management procedures in industrial environments. Taking into account the computing capabilities and connectivity of the hardware available for smart manufacturing, we propose a particular solution that allows meeting one of the essential requirements of intelligent production processes, i.e., autonomous health management. Indeed, efficient and fast algorithms, that does not require a high computational cost and can be appropriately performed on machine controllers, i.e., on edge, are combined with others, which can handle large amounts of data and calculations, executed on remote powerful supervisory platforms, i.e., on the cloud. In detail, new condition monitoring algorithms based on Model-of-Signals techniques are developed and implemented on local controllers to process the raw sensor readings and extract meaningful and compact features, according to System Identification rules and guidelines. These results are then transmitted to remote supervisors, where Particle Filters are exploited to model components degradation and predict their Remaining Useful Life. Practitioners can use this information to optimise production planning and maintenance policies. The proposed architecture allows keeping the communication traffic between edge and cloud in the nowadays affordable “Big data” range, preventing the unmanageable “Huge data” scenario that would follow from the transmission of raw sensor data. Furthermore, the robustness and effectiveness of the proposed method are tested considering a meaningful benchmark, the PRONOSTIA dataset, allowing reproducibility and comparison with other approaches.

Funder

Alma Mater Studiorum - Università di Bologna

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Industrial and Manufacturing Engineering,Software

Reference31 articles.

1. An, D., Choi, J. H., & Kim, N. H. (2013). Prognostics 101: A tutorial for particle filter-based prognostics algorithm using matlab. Reliability Engineering and System Safety, 115, 161–169.

2. Arulampalam, M. S., Maskell, S., Gordon, N., & Clapp, T. (2002). A tutorial on particle filters for online nonlinear/non-gaussian Bayesian tracking. IEEE Transactions on Signal Processing, 50(2), 174–188.

3. Atamuradov, V., Medjaher, K., Dersin, P., Lamoureux, B., & Zerhouni, N. (2017). Prognostics and health management for maintenance practitioners-review, implementation and tools evaluation. International Journal of Prognostics and Health Management, 8(060), 1–31.

4. Barbieri, M. (2017). Seamless infrastructure for “big-data” collection and transportation and distributed elaboration oriented to predictive maintenance of automatic machines. Master’s thesis, University of Bologna.

5. Barbieri, M., Bosso, A., Conficoni, C., Diversi, R., Sartini, M., & Tilli, A. (2018). An onboard model-of-signals approach for condition monitoring in automatic machines. In Enterprise Interoperability: Smart Services and Business Impact of Enterprise Interoperability (pp 263–269). Wiley – ISTE.

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3