A Cotraining-Based Semisupervised Approach for Remaining-Useful-Life Prediction of Bearings

Author:

Yan Xuguo,Xia Xuhui,Wang Lei,Zhang Zelin

Abstract

The failure of bearings can have a significant negative impact on the safe operation of equipment. Recently, deep learning has become one of the focuses of RUL prediction due to its potent scalability and nonlinear fitting ability. The supervised learning process in deep learning requires a significant quantity of labeled data, but data labeling can be expensive and time-consuming. Cotraining is a semisupervised learning method that reduces the quantity of required labeled data through exploiting available unlabeled data in supervised learning to boost accuracy. This paper innovatively proposes a cotraining-based approach for RUL prediction. A CNN and an LSTM were cotrained on large amounts of unlabeled data to obtain a health indicator (HI), then the monitoring data were entered into the HI and the RUL prediction was realized. The effectiveness of the proposed approach was compared and analyzed against individual CNN and LSTM and the stacking networks SAE+LSTM and CNN+LSTM in the existing literature using RMSE and MAPE values on a PHM 2012 dataset. The results demonstrate that the RMSE and MAPE value of the proposed approach are superior to individual CNN and LSTM, and the RMSE value of the proposed approach is 54.72, which is significantly lower than SAE+LSTM (137.12), and close to CNN+LSTM (49.36). The proposed approach has also been tested successfully on a real-world task and thus has strong application value.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3