Funder
Science and Technology Project of China Tobacco Zhejiang Industrial Co., Ltd.
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Industrial and Manufacturing Engineering,Software
Reference39 articles.
1. Bochkovskiy, A., Wang, C. Y., & Liao, H. Y. M. (2020). YOLOv4: Optimal speed and accuracy of object detection. arXiv:2004.10934
2. Chen, J., Liu, Z., Wang, H., Nunez, A., & Han, Z. (2018). Automatic defect detection of fasteners on the catenary support device using deep convolutional neural network. IEEE Transactions on Instrumentation and Measurement, 67(2), 257–269. https://doi.org/10.1109/TIM.2017.2775345.
3. Condorí, M. , Albesa, F., Altobelli, F., Duran, G., & Sorrentino, C. (2020). Image processing for monitoring of the cured tobacco process in a bulk-curing Dstove. Computers and Electronics in Agriculture. https://doi.org/10.1016/j.compag.2019.105113
4. Dhillon, A., & Verma, G. K. (2020). Convolutional neural network: A review of models, methodologies and applications to object detection. Progress in Artificial Intelligence, 9(2), 85–112. https://doi.org/10.1007/s13748-019-00203-0.
5. Giesko, T., Mazurkiewicz, A., Garbacz, P., Czajka, P., Sikora, L., & Dobrowolski, J. (2018). Innovative optomechatronic technologies in the tobacco industry. Journal of Machine Construction and Maintenance - Problemy Eksploatacji 323–332.
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献