Machine learning-based models to predict aquatic ecological risk for engineered nanoparticles: using hazard concentration for 5% of species as an endpoint
Author:
Funder
National Natural Science Foundation of China
Qinglan Project of Jiangsu Province of China
Publisher
Springer Science and Business Media LLC
Link
https://link.springer.com/content/pdf/10.1007/s11356-024-32723-1.pdf
Reference68 articles.
1. Adam N, Vakurov A, Knapen D, Blust R (2015) The chronic toxicity of CuO nanoparticles and copper salt to Daphnia magna. J Hazard Mater 283:416–422
2. Balraadjsing S, Peijnenburg W, Vijver MG (2022) Exploring the potential of in silico machine learning tools for the prediction of acute Daphnia magna nanotoxicity. Chemosphere 307:135930
3. Banerjee A, Kar S, Pore S, Roy K (2023) Efficient predictions of cytotoxicity of TiO2-based multi-component nanoparticles using a machine learning-based q-RASAR approach. Nanotoxicology 17(1):78–93
4. Batley GE, Kirby JK, McLaughlin MJ (2013) Fate and risks of nanomaterials in aquatic and terrestrial environments. Acc Chem Res 46(3):854–862
5. Book F, Backhaus T (2022) Aquatic ecotoxicity of manufactured silica nanoparticles: a systematic review and meta-analysis. Sci Total Environ 806:150893
Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Graph neural networks-enhanced relation prediction for ecotoxicology (GRAPE);Journal of Hazardous Materials;2024-07
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3