Modelling of ecological status of Polish lakes using deep learning techniques

Author:

Gebler DanielORCID,Kolada Agnieszka,Pasztaleniec Agnieszka,Szoszkiewicz Krzysztof

Abstract

AbstractSince 2000, after the Water Framework Directive came into force, aquatic ecosystems’ bioassessment has acquired immense practical importance for water management. Currently, due to extensive scientific research and monitoring, we have gathered comprehensive hydrobiological databases. The amount of available data increases with each subsequent year of monitoring, and the efficient analysis of these data requires the use of proper mathematical tools. Our study challenges the comparison of the modelling potential between four indices for the ecological status assessment of lakes based on three groups of aquatic organisms, i.e. phytoplankton, phytobenthos and macrophytes. One of the deep learning techniques, artificial neural networks, has been used to predict values of four biological indices based on the limited set of the physicochemical parameters of water. All analyses were conducted separately for lakes with various stratification regimes as they function differently. The best modelling quality in terms of high values of coefficients of determination and low values of the normalised root mean square error was obtained for chlorophyll a followed by phytoplankton multimetric. A lower degree of fit was obtained in the networks for macrophyte index, and the poorest model quality was obtained for phytobenthos index. For all indices, modelling quality for non-stratified lakes was higher than this for stratified lakes, giving a higher percentage of variance explained by the networks and lower values of errors. Sensitivity analysis showed that among physicochemical parameters, water transparency (Secchi disk reading) exhibits the strongest relationship with the ecological status of lakes derived by phytoplankton and macrophytes. At the same time, all input variables indicated a negligible impact on phytobenthos index. In this way, different explanations of the relationship between biological and trophic variables were revealed.

Funder

Narodowa Agencja Wymiany Akademickiej

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Pollution,Environmental Chemistry,General Medicine

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3