Predicting Coastal Dissolved Oxygen Values with the Use of Artificial Neural Networks: A Case Study for Cyprus

Author:

Hadjisolomou E,Antoniadis K,Vasiliades L,Rousou M,Thasitis I,Abualhaija R,Herodotou H,Michaelides M,Kyriakides I

Abstract

Abstract Coastal hypoxia is a serious environmental problem that needs to be addressed at a global level. The phenomenon of hypoxia is characterized by low Dissolved Oxygen (DO) levels in the water column that causes detrimental effects on aquatic organisms. Anthropogenic activities such as intensive agriculture practices and point-source nutrient loading are considered the main causes of coastal hypoxia. This study utilizes data-driven modelling based on Artificial Neural Networks (ANNs), and specifically Feed-Forward ANNs, to predict surface DO levels. Several surface water quality parameters such as water temperature, nitrogen species (ammonium, nitrite and nitrate), phosphorus, pH, salinity, electrical conductivity, and chlorophyll-a served as the ANN’s input parameters. These parameters were measured at several sampling sites in the coastal waters of Cyprus and some of the sites were located near areas with anthropogenic activities, during the period 2000-2021. An ANN with a 9-5-1 topology was developed and ANN managed to predict with good accuracy the DO levels, with the Coefficient of determination (r 2) as high as r 2=0.991 for the test set. Additionally, sensitivity analysis was performed to measure the impact of each input parameter on the DO level, and it was estimated that the water temperature is the most influential factor. The “Weights” sensitivity analysis algorithm was used for this purpose. The ANN-based method proposed can be used as a management tool for predicting the DO levels and prevention of hypoxia. Therefore, this work has a positive impact on marine sciences and marine information technology.

Publisher

IOP Publishing

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3