Response of atmospheric deposition and surface water chemistry to the COVID-19 lockdown in an alpine area

Author:

Rogora MichelaORCID,Steingruber SandraORCID,Marchetto AldoORCID,Mosello Rosario,Giacomotti Paola,Orru’ Arianna,Tartari Gabriele A.,Tiberti Rocco

Abstract

Abstract The effects of the COVID-19 lockdown on deposition and surface water chemistry were investigated in an area south of the Alps. Long-term data provided by the monitoring networks revealed that the deposition of sulfur and nitrogen compounds in this area has stabilized since around 2010; in 2020, however, both concentrations and deposition were significantly below the average values of the previous decade for SO4 and NO3. Less evident changes were observed for NH4 and base cation. The estimated decrease of deposition in 2020 with respect to the previous decade was on average − 54% and − 46% for SO4 and NO3, respectively. The lower deposition of SO4 and NO3 recorded in 2020 was caused by the sharp decrease of SO2 and particularly of NOx air concentrations mainly due to the mobility restrictions consequent to the COVID-19 lockdown. The limited effects on NH4 deposition can be explained by the fact that NH3 emission was not affected by the lockdown, being mainly related to agricultural activities. A widespread response to the decreased deposition of S and N compounds was observed in a group of pristine freshwater sites, with NO3 concentrations in 2020 clearly below the long-term average. The rapid chemical recovery observed at freshwater sites in response to the sharp decrease of deposition put in evidence the high resilience potential of freshwater ecosystems in pristine regions and demonstrated the great potential of emission reduction policy in producing further substantial ameliorations of the water quality at sensitive sites.

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Pollution,Environmental Chemistry,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3