Synergistic effect of sorption and photocatalysis on the degree of dye removal in single and multicomponent systems on ZnO-SnO2

Author:

Długosz OlgaORCID,Staroń Anita,Brzoza Paulina,Banach Marcin

Abstract

AbstractThe paper presents the photodegradation process of one-, two- and three-component dye mixtures by ZnO-SnO2 nanoparticles. After 60 min of running the processes, the dye removal efficiencies of 76.44, 72.69, 62.43, 77.00 and 92.46% for MB, RB, TB, MO and YQ degradation, respectively, were obtained. For binary and ternary systems, dye removal efficiencies for all cases exceeded 70%. When the binary and ternary dye mixtures were tested, the photodegradation efficiencies of ZnO-SnO2 were similar to those of the single mixtures, indicating that this material could be used in industrial applications in the future. The focus of the study was to investigate the effect of sorption on photodegradation efficiency and the presence of both cationic and anionic dyes on their degradation efficiency under UV light. The significance of the effect of sorption on the degradation efficiency allowing the interaction of the catalyst with the dyes removed was confirmed. The main factor influencing sorption and consequently photocatalysis was the nature of the dye. It was confirmed that the positively charged ZnO-SnO2 surface effectively sorbs the dyes and causes their degradation.

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Pollution,Environmental Chemistry,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3