Experimental studies of thermal performance of an evacuated tube heat pipe solar collector in Polish climatic conditions

Author:

Siuta-Olcha AlicjaORCID,Cholewa Tomasz,Dopieralska-Howoruszko Kinga

Abstract

AbstractThis work presents the results of experimental studies on the energy performance of an evacuated solar collector, heat pipe type, consisting of 24 tubes, over the period of 2 months. The solar collector with a gross area of 3.9 m2 is part the solar hot water test system located in Lublin (Poland). The effect of the weather conditions and operating parameters on the thermal and exergy efficiencies of the evacuated tube solar collector has been defined. The solar irradiation per month for July amounted to 80 kWh/m2, and for August, it equalled 112.8 kWh/m2. The average thermal gain was found to be in July 163 W/m2 and in August 145 W/m2, respectively. For the considered study period, the average value of energy yield in the solar collector was obtained at the level of 4.28 MJ/(m2·d). The average monthly energy efficiencies of the solar collector in July and August were 45.3% and 32.9%, respectively, while the average monthly exergy efficiencies reached 2.62% and 2.15%, respectively. Increasing the wind speed to 0.86 m/s decreases the thermal efficiency and the exergy efficiency by 67% and 41%, respectively.

Funder

Polish Ministry of Science and Higher Education

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Pollution,Environmental Chemistry,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3