Optimizing the performance of solar evacuated tube collector systems for seawater desalination

Author:

Patel Nitesh1,Joshi Unnati1,Patel Vijay2,Joshi Anand3,Oza Ankit D.4,Kumar Abhinav56ORCID,Velkin Vladimir Ivanovich5

Affiliation:

1. Department of Mechanical Engineering Parul University Vadodara Gujarat India

2. School of Science, Manufacturing and Infrastructure, Kaushalya ‐ The Skill University Ahmedabad Gujarat India

3. Department of Mechatronics Engineering Parul University Vadodara Gujarat India

4. University Centre of Research and Development Chandigarh University Mohali Punjab India

5. Department of Nuclear and Renewable Energy Ural Federal University Named after the First President of Russia Boris Yeltsin Ekaterinburg Russia

6. Department of Mechanical Engineering Karpagam Academy of Higher Education Coimbatore India

Abstract

AbstractSolar thermal collectors, such as evacuated tube collectors (ETCs), are essential for harnessing renewable energy, yet their efficiency is often hindered by thermal losses and limited heat transfer. This study focuses on enhancing ETC performance for seawater desalination by using nanofluids as heat transfer fluids. These modifications aim to improve heat transfer rates, reduce thermal losses, increase the maximum temperature attainable, and minimize the collector area required. An experimental setup has been developed at Parul University in Vadodara, Gujarat, India. Key parameters such as air mass flow rate, inclination angle, water mass flow rate, nanofluid volume percentage, and screw conveyor speed were optimized to achieve ideal temperature levels. Results indicate that the optimal configuration for steam generation includes a high air mass flow rate and a 40° inclination angle for the ETC. Additionally, a water mass flow rate of 10 LPH and a screw conveyor speed of 30 rpm are crucial for optimal performance. Data collected showed the highest solar energy levels between 12 PM and 1 PM, which significant decreases post this peak period. These findings highlight the potential of nanomaterial‐based enhancements in improving the efficiency and cost‐effectiveness of solar thermal systems for renewable energy applications.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3