Characterization of organic-rich mineral debris revealed by rapid glacier retreat, Indren Glacier, European Alps

Author:

Freppaz MicheleORCID,Williams Mark W.ORCID,Gabrieli JacopoORCID,Gorra RobertaORCID,Mania IlariaORCID,Ascher-Jenull JudithORCID,Egli MarkusORCID,Celi LuisellaORCID

Abstract

AbstractIn the summer of 2003 and 2004, characterized by a rapid glacier retreat, a stony surface covered by well-structured organic-rich mineral debris was observed very close to the Indren glacier terminus (Monte Rosa Massif, NW Italy, 3100 m ASL), on an area covered by the glacier tongue till the year before. The origin and type of this organic-rich material were investigated, in order to detect their characteristics, potential sources and fate within the foreland system. The deposits were dated using Carbon-14 and analyzed for the chemical characteristics of the organic component, the elemental composition of the mineral fraction and presence of microbial markers. The material, granular and dark in color, had a total organic carbon (TOC) content ranging between 17.4 ± 0.39 and 28.1 ± 0.63 g kg−1 dry weight (dw), significantly higher than the surrounding glacial till (~ 1.4 g kg−1 dw), although only 0.33% of it was in water soluble form. Microbial carbon (C) and nitrogen (N) accounted for 10.6% and 3.13% of TOC and total N, respectively. Dissolved nitrogen (N), mainly present as ammonium, represented 2.40% of the total N. The low aromatic component and large presence of nitrogen (N)-derived compounds suggested that most of the organic carbon (OC) in these organic-rich mineral deposits was derived from microbial cells, although the high average radiocarbon age of about 2900 years may also point to the contribution of aeolian depositions of anthropogenic or natural origin. Elemental composition and the crustal enrichment factor of trace elements in the mineral fraction of the aggregates corroborated the hypothesis that most part of the accumulated material derived from ice meltwater. Some indicators of the colonization of these deposits by microbial communities were also reported, from the abundance of DNA and phylogenetic markers, to the presence of bacterial taxa commonly able to thrive in similar habitats. All these elements suggested that such kind of deposits may have a potential role as energy and nutrient sources in recently deglaciated areas, highlighting the necessity to better understand the processes underlying their formation and their evolution.

Publisher

Springer Science and Business Media LLC

Subject

Nature and Landscape Conservation,Earth-Surface Processes,Geology,Geography, Planning and Development,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3