Validation of ERA5-Land temperature and relative humidity on four Peruvian glaciers using on-glacier observations

Author:

Bonshoms MartíORCID,Ubeda JoseORCID,Liguori GiovanniORCID,Körner PhilippORCID,Navarro ÁlvaroORCID,Cruz RolandoORCID

Abstract

AbstractWeather and climate conditions drive the evolution of tropical glaciers which play an important role as water reservoirs for Peruvian inhabitants in the arid coast and semi-arid Andean region. The scarcity of long-term high-quality observations over Peruvian glaciers has motivated the extensive use of reanalysis data to describe the climatic evolution of these glaciers. However, the representativeness and uncertainties of these reanalysis products over these glaciers are still poorly constrained. This study evaluates the ability of the ERA5-Land reanalysis (ERA5L) to reproduce hourly and monthly 2 m air temperature and relative humidity (T2m and Rh2m, respectively) over several Peruvian glaciers. We compared the ERA5L with data from four on-glacier automatic weather stations (AWS), whose hourly time series were completed with nearby stations, for the period January 2017 to December 2019. Results indicates a better performance of the reanalysis for T2m (r >0.80) than for Rh2m (∼0.4< r <∼0.6) in all four glaciers. Concerning the observations, both parameters show a daily cycle influenced by the presence of the glacier. This influence is more prominent during the dry months when the so-called glacier damping and cooling effects are stronger. On a monthly time scale, the ERA5L validation for both parameters are better in wet outer tropical sites (RMSE between ±0.2°C for T2m and between 3%–7% for Rh2m) rather than in dry outer tropical sites (RMSE between ±0.2°C for T2m and between 3%–7% for Rh2m). Among all sites considered in the study, the Rh2m bias is the highest in the Cavalca glacier (correlation of 0.81; RMSE 13%, MAE 11% and bias 8.3%) and the lowest in Artesonraju glacier (correlation of 0.96; RMSE 3%; MAE 2.3% and bias — 0.8%). Based on certain considerations outlined in this paper, it is appropriate to use ERA5L to characterize T2m and Rh2m conditions on Peruvian glaciers, particularly in the wet outer tropics.

Publisher

Springer Science and Business Media LLC

Subject

Nature and Landscape Conservation,Earth-Surface Processes,Geology,Geography, Planning and Development,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3