Affiliation:
1. grid.9227.e 0000000119573309 Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 XiQiDao, Tianjin Airport Economic Area 300308 Tianjin China
2. grid.9227.e 0000000119573309 Center for Microbial Biotechnology, Institute of Microbiology Chinese Academy of Sciences 100080 Beijing China
3. Key Laboratory of Industrial Biotechnology Ministry of Education, Jangnan University 214122 Wuxi China
Abstract
Abstract
Sugar alcohols have been widely applied in the field of food and medicine for their unique properties. Compared to chemical production, microbial production of sugar alcohol has become attractive for its environmental and sustainable pattern. In this study, a potential yeast isolated from soil of Beijing suburbs was identified as Pichia anomala TIB-x229, and its key enzyme of d-arabitol dehydrogenase for microbial production of sugar alcohols was functionally characterized. This yeast could simultaneously produce d-arabitol, xylitol, and/or ribitol from a different ratio of sugar substrates at a high efficiency by bioconversion, and no glucose repression happened when mixed sugars of xylose and glucose were used as the substrates during the bioconversion. This yeast could also efficiently convert complicated feedstock such as xylose mother liquor to d-arabitol, xylitol, and ribitol with 55 % yields. To elucidate the conversion relationship of the sugar alcohols, especially d-arabitol and xylitol, the key d-arabitol dehydrogenase gene from P. anomala was cloned, expressed and purified for further in vitro characterization. The results showed that this d-arabitol dehydrogenase could catalyze arabitol to xylulose further, which is significant for xylitol production from glucose. Our study laid the foundation for improving the production of sugar alcohols by metabolic and fermentation engineering strategies.
Publisher
Oxford University Press (OUP)
Subject
Applied Microbiology and Biotechnology,Biotechnology,Bioengineering
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献