Affiliation:
1. grid.258151.a 0000000107081323 Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University 1800 Lihu Road 214122 Wuxi Jiangsu China
2. grid.258151.a 0000 0001 0708 1323 Synergetic Innovation Center of Food Safety and Nutrition 1800 Lihu Road 214122 Wuxi Jiangsu China
Abstract
Abstract
Gluconobacter oxydans is capable of rapidly incomplete oxidation of many sugars and alcohols, which means the strain has great potential for industrial purposes. Strong promoters are one of the essential factors that can improve strain performance by overexpression of specific genes. In this study, a pipeline for screening strong promoters by proteomics analysis was established. Based on the procedure, a new strong promoter designated as PB932_2000 was identified in G. oxydans WSH-003. The promoter region was characterized based on known genome sequence information using BPROM. The strength of PB932_2000 was further assessed by analysis of enhanced green fluorescent protein (egfp) expression and comparison with egfp expression by two commonly used strong promoters, PE. coli_tufB and PG. oxydans_tufB. Both quantitative real-time PCR and fluorescence intensities for egfp gene expression showed that PB932_2000 promoter is stronger than the other two. Overexpression of d-sorbitol dehydrogenase (sldh) by PB932_2000 in G. oxydans WSH-003 enhanced the titer and productivity of l-sorbose synthesis from d-sorbitol by 12.0 % and 33.3 %, respectively. These results showed that proteomics analysis is an efficient way to identify strong promoters. The isolated promoter PB932_2000 could further facilitate the metabolic engineering of G. oxydans.
Publisher
Oxford University Press (OUP)
Subject
Applied Microbiology and Biotechnology,Biotechnology,Bioengineering
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献