Enhanced production of l-sorbose in an industrial Gluconobacter oxydans strain by identification of a strong promoter based on proteomics analysis

Author:

Hu Yudong1,Wan Hui1,Li Jianghua12,Zhou Jingwen12

Affiliation:

1. grid.258151.a 0000000107081323 Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University 1800 Lihu Road 214122 Wuxi Jiangsu China

2. grid.258151.a 0000 0001 0708 1323 Synergetic Innovation Center of Food Safety and Nutrition 1800 Lihu Road 214122 Wuxi Jiangsu China

Abstract

Abstract Gluconobacter oxydans is capable of rapidly incomplete oxidation of many sugars and alcohols, which means the strain has great potential for industrial purposes. Strong promoters are one of the essential factors that can improve strain performance by overexpression of specific genes. In this study, a pipeline for screening strong promoters by proteomics analysis was established. Based on the procedure, a new strong promoter designated as PB932_2000 was identified in G. oxydans WSH-003. The promoter region was characterized based on known genome sequence information using BPROM. The strength of PB932_2000 was further assessed by analysis of enhanced green fluorescent protein (egfp) expression and comparison with egfp expression by two commonly used strong promoters, PE. coli_tufB and PG. oxydans_tufB. Both quantitative real-time PCR and fluorescence intensities for egfp gene expression showed that PB932_2000 promoter is stronger than the other two. Overexpression of d-sorbitol dehydrogenase (sldh) by PB932_2000 in G. oxydans WSH-003 enhanced the titer and productivity of l-sorbose synthesis from d-sorbitol by 12.0 % and 33.3 %, respectively. These results showed that proteomics analysis is an efficient way to identify strong promoters. The isolated promoter PB932_2000 could further facilitate the metabolic engineering of G. oxydans.

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology,Biotechnology,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3