Lipidomics characterization of the alterations of Trichoderma brevicompactum membrane glycerophospholipids during the fermentation phase

Author:

Bai Yunfan1,Gao Yuran1,Lu Xin1,Wang Huiyu2

Affiliation:

1. 0000 0001 0193 3564 grid.19373.3f School of Life Science and Technology Harbin Institute of Technology Harbin City China

2. 0000 0004 1808 3289 grid.412613.3 School of Pharmacy Qiqihar Medical University No. 333, North Bukui Street 161000 Qiqihar City China

Abstract

Abstract The biological membrane lipid composition has been demonstrated to greatly influence the secretion of secondary metabolites. This study was conducted to investigate the periodical alterations of whole cellular lipids and their associations with secondary products in Trichoderma brevicompactum. An electrospray ionization–mass spectrometry-based lipidomics strategy was used to acquire the metabolic profiles of membrane lipids during fermentation. Univariate analyses showed that most fungi glycerophospholipids were significantly altered at the early phase compared with the late phase. In addition, correlation analyses showed high correlations between phosphatidylcholine alterations and fermentation duration. In addition, the fermentation-associated alterations of phosphatidylcholines were found to be in accordance with the degrees of unsaturation of acyl-chains. Harzianum A reached a maximum on the 12th day, while trichodermin and 6-pentyl-2H-pyran-2-one showed the highest abundances on the 9th day, both of which were inclined to correlate with the alterations of phosphatidylcholines and phosphatidylethanolamines, respectively. These findings demonstrated that the alterations of the membrane lipid species in Trichoderma spp. were associated with the fermentation phases and might influence the secretion of specific secondary products, which may be useful in studying the optimization of secondary products in Trichoderma spp.

Funder

The Science and Technology Project of Qiqihar City

The Doctoral Scientific Fund Project

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology,Biotechnology,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3