Physiological characterization of lipid accumulation and in vivo ester formation in Gordonia sp. KTR9

Author:

Eberly Jed O1,Ringelberg David B2,Indest Karl J1

Affiliation:

1. grid.417553.1 0000000106379574 Environmental Laboratory CEERD EP-P, U.S. Army Engineer Research and Development Center 3909 Halls Ferry Road 39180 Vicksburg MS USA

2. grid.431335.3 0000000405824666 Cold Regions Research and Engineering Laboratory U.S. Army Engineer Research and Development Center 03755 Hanover NH USA

Abstract

Abstract Previous work has demonstrated the feasibility of in vivo biodiesel synthesis in Escherichia coli, however, ethyl ester formation was dependent on an external fatty acid feedstock. In contrast to E. coli, actinomycetes may be ideal organisms for direct biodiesel synthesis because of their capacity to synthesize high levels of triacylglcerides (TAGs). In this study, we investigated the physiology and associated TAG accumulation along with the in vivo ability to catalyze ester formation from exogenous short chain alcohol sources in Gordonia sp. KTR9, a strain that possesses a large number of genes dedicated to fatty acid and lipid biosynthesis. Total lipid fatty acids content increased by 75 % and TAG content increased by 50 % under nitrogen starvation conditions in strain KTR9. Strain KTR9 tolerated the exogenous addition of up to 4 % methanol, 4 % ethanol and 2 % propanol in the media. Increasing alcohol concentrations resulted in a decrease in the degree of saturation of recovered fatty acid alcohol esters and a slight increase in the fatty acid chain length. A linear dose dependency in fatty alcohol ester synthesis was observed in the presence of 0.5–2 % methanol and ethanol compared to control KTR9 strains grown in the absence of alcohols. An inspection of the KTR9 genome revealed the presence of several putative wax ester synthase/acyl-coenzyme A : diacylglycerol acyltransferase (WS/DGAT) enzymes, encoded by atf gene homologs, that may catalyze the in vivo synthesis of fatty acid esters from short chain alcohols. Collectively, these results indicate that Gordonia sp. KTR9 may be a suitable actinomycete host strain for in vivo biodiesel synthesis.

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology,Biotechnology,Bioengineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Metabolic Engineering of Lipid Biosynthesis Pathway to Enhance the Oil Content in Microalgae;Recent Advances in Bioprocess Engineering and Bioreactor Design;2024

2. Extremofuels: production of biofuels by extremophile microbes as an alternative to avoid climate change effects;Microbiome Under Changing Climate;2022

3. A review on recent trends in the microbial production of biodiesel;INTERNATIONAL CONFERENCE ON ENERGY AND ENVIRONMENT (ICEE 2021);2021

4. Bacterial production of fatty acid and biodiesel: opportunity and challenges;Refining Biomass Residues for Sustainable Energy and Bioproducts;2020

5. Oil and Hydrocarbon-Producing Bacteria;Biogenesis of Hydrocarbons;2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3