Redox cofactor engineering in industrial microorganisms: strategies, recent applications and future directions

Author:

Liu Jiaheng123,Li Huiling123,Zhao Guangrong123,Caiyin Qinggele12,Qiao Jianjun123

Affiliation:

1. 0000 0004 1761 2484 grid.33763.32 Key Laboratory of Systems Bioengineering (Ministry of Education) Tianjin University 300072 Tianjin People’s Republic of China

2. 0000 0004 1761 2484 grid.33763.32 School of Chemical Engineering and Technology Tianjin University 300072 Tianjin People’s Republic of China

3. 0000 0004 1761 2484 grid.33763.32 SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) 300072 Tianjin People’s Republic of China

Abstract

Abstract NAD and NADP, a pivotal class of cofactors, which function as essential electron donors or acceptors in all biological organisms, drive considerable catabolic and anabolic reactions. Furthermore, they play critical roles in maintaining intracellular redox homeostasis. However, many metabolic engineering efforts in industrial microorganisms towards modification or introduction of metabolic pathways, especially those involving consumption, generation or transformation of NAD/NADP, often induce fluctuations in redox state, which dramatically impede cellular metabolism, resulting in decreased growth performance and biosynthetic capacity. Here, we comprehensively review the cofactor engineering strategies for solving the problematic redox imbalance in metabolism modification, as well as their features, suitabilities and recent applications. Some representative examples of in vitro biocatalysis are also described. In addition, we briefly discuss how tools and methods from the field of synthetic biology can be applied for cofactor engineering. Finally, future directions and challenges for development of cofactor redox engineering are presented.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Funds for Creative Research Groups of China

New Century Outstanding Talent Support Program, Education Ministry of China

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology,Biotechnology,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3