Applications of genome-scale metabolic network model in metabolic engineering

Author:

Kim Byoungjin1,Kim Won Jun1,Kim Dong In1,Lee Sang Yup1

Affiliation:

1. grid.37172.30 0000000122920500 Department of Chemical and Biomolecular Engineering (BK21 Plus Program), BioProcess Engineering Research Center, Bioinformatics Research Center, Center for Systems and Synthetic Biotechnology Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST) 291 Daehak-ro, Yuseong-gu 305-701 Daejeon Republic of Korea

Abstract

Abstract Genome-scale metabolic network model (GEM) is a fundamental framework in systems metabolic engineering. GEM is built upon extensive experimental data and literature information on gene annotation and function, metabolites and enzymes so that it contains all known metabolic reactions within an organism. Constraint-based analysis of GEM enables the identification of phenotypic properties of an organism and hypothesis-driven engineering of cellular functions to achieve objectives. Along with the advances in omics, high-throughput technology and computational algorithms, the scope and applications of GEM have substantially expanded. In particular, various computational algorithms have been developed to predict beneficial gene deletion and amplification targets and used to guide the strain development process for the efficient production of industrially important chemicals. Furthermore, an Escherichia coli GEM was integrated with a pathway prediction algorithm and used to evaluate all possible routes for the production of a list of commodity chemicals in E. coli. Combined with the wealth of experimental data produced by high-throughput techniques, much effort has been exerted to add more biological contexts into GEM through the integration of omics data and regulatory network information for the mechanistic understanding and improved prediction capabilities. In this paper, we review the recent developments and applications of GEM focusing on the GEM-based computational algorithms available for microbial metabolic engineering.

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology,Biotechnology,Bioengineering

Reference95 articles.

1. The RAVEN toolbox and its use for generating a genome-scale metabolic model for Penicillium chrysogenum;Agren;PLoS Comput Biol,2013

2. Identifying gene targets for the metabolic engineering of lycopene biosynthesis in Escherichia coli;Alper;Metab Eng,2005

3. Integration of expression data in genome-scale metabolic network reconstructions;Anna;Front Physiol,2012

4. GLAMM: genome-linked application for metabolic maps;Bates;Nucleic Acids Res,2011

5. Context-specific metabolic networks are consistent with experiments;Becker;PLoS Comput Biol,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3