Affiliation:
1. grid.4280.e 0000 0001 2180 6431 Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4, Block E5-02-09 117585 Singapore Singapore
2. grid.4280.e 0000 0001 2180 6431 Department of Civil and Environmental Engineering National University of Singapore 1 Engineering Drive 2 117576 Singapore Singapore
Abstract
Abstract
Production of esters from the acetone-butanol-ethanol (ABE) fermentation by Clostridium often focuses on butyl butyrate, leaving acetone as an undesired product. Addition of butyrate is also often needed because ABE fermentation does not produce enough butyrate. Here we addressed the problems using Clostridium beijerinckii BGS1 that preferred to produce isopropanol instead of acetone, and co-culturing it with Clostridium tyrobutyricum ATCC 25,755 that produced butyrate. Unlike acetone, isopropanol could be converted into ester using lipase and acids . C. tyrobutyricum ATCC 25,755 produced acids at pH 6, while C. beijerinckii BGS1 produced mainly solvents at the same pH. When the two strains were co-cultured, more butyrate was produced, leading to a higher titer of esters than the mono-culture of C. beijerinckii BGS1. As the first study reporting the production of isopropyl butyrate from the Clostridium fermentation, this study highlighted the potential use of lipase and co-culture strategy in ester production.
Funder
Singapore Millennium Foundation
Publisher
Oxford University Press (OUP)
Subject
Applied Microbiology and Biotechnology,Biotechnology,Bioengineering
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献