A defined growth medium with very low background carbon for culturingClostridium thermocellum

Author:

Holwerda Evert K1,Hirst Kyle D1,Lynd Lee R1

Affiliation:

1. grid.254880.3 0000000121792404 Thayer School of Engineering at Dartmouth College 8000 Cummings Hall 03755 Hanover NH USA

Abstract

AbstractA growth medium was developed for cultivation of Clostridium thermocellum ATCC 27405 in which “background” carbon present in buffers, reducing agents, chelating agents, and growth factors was a small fraction of the carbon present in the primary growth substrate. Background carbon was 1.6% of primary substrate carbon in the low-carbon (LC) medium, whereas it accounts for at least 40% in previously reported media. Fermentation of cellulose in LC medium was quite similar to Medium for Thermophilic Clostridia (MTC), a commonly used growth medium that contains background carbon at 88% of primary substrate carbon. Of particular note, we found that the organism can readily be cultivated by eliminating some components, lowering the concentrations of others, and employing a tenfold lower concentration of reducing agent. As such, we were able to reduce the amount of background carbon 55-fold compared to MTC medium while reaching the same cell biomass concentration. The final mass ratios of the products acetate:ethanol:formate were 5:3.9:1 for MTC and 4.1:1.5:1 for LC medium. LC medium is expected to facilitate metabolic studies involving identification and quantification of extracellular metabolites. In addition, this medium is expected to be useful in studies of cellulose utilization by anaerobic enrichment cultures obtained from environmental inocula, and in particular to diminish complications arising from metabolism of carbon-containing compounds other than cellulose. Finally, LC medium provides a starting point for industrial growth media development.

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology,Biotechnology,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3