Structural characterization and dynamics of AdhE ultrastructures from Clostridium thermocellum: A containment strategy for toxic intermediates?

Author:

Ziegler Samantha J.1,Knott Brandon C.1,Gruber Josephine N.1,Hengge Neal N.1,Xu Qi1,Olson Daniel G.2,Romero Eduardo E.3,Joubert Lydia M.4,Bomble Yannick J.1ORCID

Affiliation:

1. Biosciences Center, National Renewable Energy Laboratory

2. Thayer School of Engineering at Dartmouth College

3. Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus

4. SLAC National Accelerator Laboratory

Abstract

Clostridium thermocellum , a cellulolytic thermophilic anaerobe, is considered by many to be a prime candidate for the realization of consolidated bioprocessing (CBP) and is known as an industry standard for biofuel production. C. thermocellum is among the best biomass degraders identified to date in nature and produces ethanol as one of its main products. Many studies have helped increase ethanol titers in this microbe, however ethanol production using C. thermocellum is still not economically viable. Therefore, a better understanding of its ethanol synthesis pathway is required. The main pathway for ethanol production in C. thermocellum involves the bifunctional aldehyde-alcohol dehydrogenase (AdhE). To better understand the function of the C. thermocellum AdhE, we used cryo-electron microscopy (cryo-EM) to obtain a 3.28 Å structure of the AdhE complex. This high-resolution structure, in combination with molecular dynamics simulations, provides insight into the substrate channeling of the toxic intermediate acetaldehyde, indicates the potential role of C. thermocellum AdhE to regulate activity and cofactor pools, and establishes a basis for future engineering studies. The containment strategy found in this enzyme offers a template that could be replicated in other systems where toxic intermediates need to be sequestered to increase the production of valuable biochemicals.

Publisher

eLife Sciences Publications, Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3