An economically and environmentally acceptable synthesis of chiral drug intermediate l-pipecolic acid from biomass-derived lysine via artificially engineered microbes

Author:

Cheng Jie12,Huang Yuding1,Mi Le12,Chen Wujiu2,Wang Dan1,Wang Qinhong2

Affiliation:

1. 0000 0001 0154 0904 grid.190737.b Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, Department of Chemical Engineering, School of Chemistry and Chemical Engineering Chongqing University 400044 Chongqing People’s Republic of China

2. 0000000119573309 grid.9227.e Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 300308 Tianjin People’s Republic of China

Abstract

Abstract Deficiency in petroleum resources and increasing environmental concerns have pushed a bio-based economy to be built, employing a highly reproducible, metal contaminant free, sustainable and green biomanufacturing method. Here, a chiral drug intermediate l-pipecolic acid has been synthesized from biomass-derived lysine. This artificial bioconversion system involves the coexpression of four functional genes, which encode l-lysine α-oxidase from Scomber japonicus, glucose dehydrogenase from Bacillus subtilis, Δ1-piperideine-2-carboxylase reductase from Pseudomonas putida, and lysine permease from Escherichia coli. Besides, a lysine degradation enzyme has been knocked out to strengthen the process in this microbe. The overexpression of LysP improved the l-pipecolic acid titer about 1.6-folds compared to the control. This engineered microbial factory showed the highest l-pipecolic acid production of 46.7 g/L reported to date and a higher productivity of 2.41 g/L h and a yield of 0.89 g/g. This biotechnological l-pipecolic acid production is a simple, economic, and green technology to replace the presently used chemical synthesis.

Funder

the Industrial Biotechnology Program of Tianjin Municipal Science and Technology Commission

the Fundamental Research Funds for the Central Universities

the Henan Provincial Science and technology Open cooperation projects

Open Funding Project of the State Key Laboratory of Bioreactor Engineering, Shanghai, China

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology,Biotechnology,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3