Affiliation:
1. grid.258151.a 0000000107081323 Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University 214122 Wuxi People’s Republic of China
2. grid.267139.8 000000009188055X School of Medical Instrument and Food Engineering University of Shanghai for Science and Technology 200093 Shanghai People’s Republic of China
Abstract
Abstract
Antrodin C is one of the most potent bioactive components produced by the medicinal mushroom Antrodia camphorata. However, almost all studies in this field have focused on the biological activity of Antrodin C and relatively rare information has been reported regarding the biosynthetic process of Antrodin C. In this study, the strategies of pH-shift and glucose feeding for enhanced production of Antrodin C in submerged fermentation of A. camphorata were successfully applied in stirred bioreactors. The critical parameters for pH-shift and glucose feeding were systematically investigated. On one hand, the optimal culture pH for cell growth was distinct with Antrodin C biosynthesis and the maximum Antrodin C production was obtained by maintaining the first-stage culture at initial pH 4.5 and adjusted to 6.0 at day 8. On the other hand, it was beneficial for the Antrodin C accumulation with the initial glucose concentration of 40 g/L and feeding glucose to keep the residual sugar above 10 g/L. The maximum Antrodin C production (1,549.06 mg/L) was about 2.1-fold higher than that of control in 15-L stirred bioreactors by taking advantage of the integrated strategy of pH-shift and glucose feeding. These results would be helpful for the design of a highly efficient Antrodin C biosynthesis process.
Publisher
Oxford University Press (OUP)
Subject
Applied Microbiology and Biotechnology,Biotechnology,Bioengineering
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献