Intensification of β-poly(l-malic acid) production by Aureobasidium pullulans ipe-1 in the late exponential growth phase

Author:

Cao Weifeng12,Luo Jianquan1,Zhao Juan3,Qiao Changsheng3,Ding Luhui4,Qi Benkun1,Su Yi1,Wan Yinhua1

Affiliation:

1. grid.9227.e 0000000119573309 National Key Laboratory of Biochemical Engineering, Institute of Process Engineering Chinese Academy of Sciences 100190 Beijing People’s Republic of China

2. grid.410726.6 0000000417978419 Graduate School of the Chinese Academy of Sciences 100049 Beijing People’s Republic of China

3. grid.413109.e 0000000097356249 Department of Bioengineering Tianjin University of Science and Technology 300457 Tianjin People’s Republic of China

4. grid.6227.1 0000000121892165 Biological Engineering Department, EA 4297 TIMR Technological University of Compiegne BP 20529 60205 Compiegne France

Abstract

Abstract β-Poly(malic acid) (PMLA) has attracted industrial interest because this polyester can be used as a prodrug or for drug delivery systems. In PMLA production by Aureobasidium pullulans ipe-1, it was found that PLMA production was associated with cell growth in the early exponential growth phase and dissociated from cell growth in the late exponential growth phase. To enhance PMLA production in the late phase, different fermentation modes and strategies for controlling culture redox potential (CRP) were studied. The results showed that high concentrations of produced PMLA (above 40 g/l) not only inhibited PMLA production, but also was detrimental to cell growth. Moreover, when CRP increased from 57 to 100 mV in the late exponential growth phase, the lack of reducing power in the broth also decreased PMLA productivity. PMLA productivity could be enhanced by repeated-batch culture to maintain cell growth in the exponential growth phase, or by cell-recycle culture with membrane to remove the produced PMLA, or by maintaining CRP below 70 mV no matter which kind of fermentation mode was adopted. Repeated-batch culture afforded a high PMLA concentration (up to 63.2 g/l) with a productivity of 1.15 g l−1 h−1. Cell-recycle culture also confirmed that PMLA production by the strain ipe-1 was associated with cell growth.

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology,Biotechnology,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3